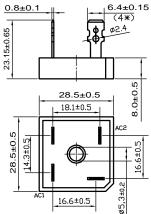
PECLERS®

GBPC50005 Thru GBPC5010

HIGH CURRENT SINGLE-PHASE SILICON BRIDGE RECTIFIER

REVERSE VOLTAGE: FORWARD CURRENT:


50 to 1000 VOLTS 50 AMPERE

Features

- ♦ UL Recognized File # E-96005
- Glass passivated junction
- The plastic material used carries Underwriters Laboratory Flammability Recognition 94V-0
- Integrally molded heatsink provide very low thermal resistance for maximum heat dissipation
- Universal 4-way terminals; snap-on, wrap-around, solder or P.C. board mounting
- Surge overload ratings 400 amperes
- Terminals solderable per MIL-STD-202, Method 208
- ♦ Typical I_R less than 0.2 uA
- ♦ High temperature soldering guaranteed: 260°C / 10 seconds / .375", (9.5mm) lead lengths
- Isolated voltage from case to lead over 2500 volts

GBPC...A

Dimensions in millimeters

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60H_Z, resistive or inductive load.

For capacitive load, derate current by 20%.

	Symbols	005	01	02	04	06	08	10	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at TC=55℃	$I_{(AV)}$				50				Amp
Peak Forward Surge Current,8.3ms single half-sine- wave superimposed on rated load (JEDEC method)	I _{FSM}	500							Amp
Maximum Forward Voltage at 25A DC and 25℃	V_{F}	1.1							Volts
Maximum Reverse Current at T _A =25℃		10.0							
at Rated DC Blocking Voltage T _A =125℃	I_R		1000						uAmp
Typical Junction Capacitance (Note 1)	C_{J}	300							pF
Typical Thermal Resistance (Note 2)	$R_{\theta JC}$	2							°C/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							ဇ

NOTES:

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal resistance from junction to case per leg

RATINGS AND CHARACTERISTIC CURVES

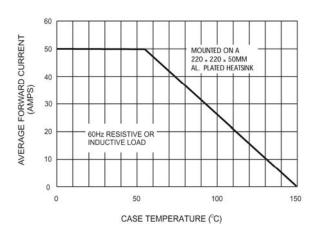


Figure 1. Forward Current Derating Curve

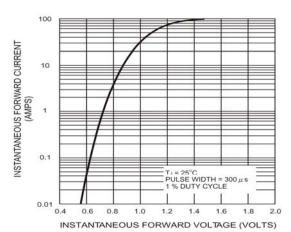


Figure 2. Typical Instantaneous Forward Characteristics Per Brdige Element

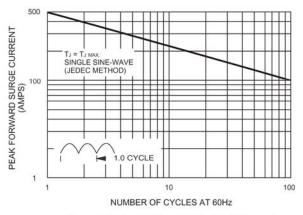


Figure 3. Maximum Non-repetitive Peak Forward Surge Current Per Bridge Element

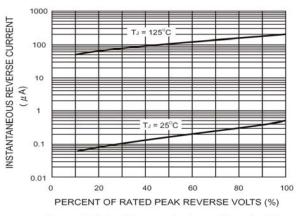


Figure 4. Typical Reverse Leakage Characteristics Per Bridge Element

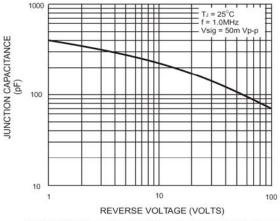
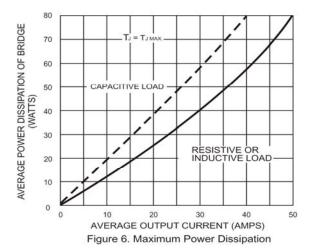



Figure 5. Typical Junction Capacitance Per Bridge Element

