REVERSE VOLTAGE:
FORWARD CURRENT:

50 to 1000 VOLTS
1.0 AMPERE

FEATURES

- Plastic material has Underwriters Laboratory

Flammability Classification 94V-0

- High surge overload rating of 50 Amperes peak
- Ideal for printed circuit board
- Glass passivated chip junction

MECHANICAL DATA

Case: Molded plastic, DB
Epoxy: UL 94V-O rate flame retardant
Terminals: Leads solderable per MIL-STD-202, method 208 guaranteed
Mounting position: Any
Weight: 0.02 ounce, 0.4 gram

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.
Single phase, half wave, $60 \mathrm{H}_{\mathrm{Z}}$, resistive or inductive load.
For capacitive load, derate current by 20%.

	Symbols	DB101	DB102	DB103	DB104	DB105	DB106	DB107	Units
Maximum Recurrent Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	$\mathrm{V}_{\text {DC }}$	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current at $\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$	$\mathbf{I}_{\text {(AV) }}$	1.0							Amp
Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	$\mathrm{I}_{\mathrm{FSM}}$	50							Amp
Maximum Forward Voltage at 1.0 A DC and $25^{\circ} \mathrm{C}$	$V_{\text {F }}$	1.1							Volts
Maximum Reverse Current at $_{\mathrm{T}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{A}}=\mathbf{1 2 5} 5^{\circ} \mathrm{C}$	I_{R}	$\begin{aligned} & 5.0 \\ & 500 \end{aligned}$							uAmp
Typical Junction Capacitance (Note 1)	C_{J}	25							pF
Typical Thermal Resistance (Note 2)	$\mathrm{R}_{\text {OJA }}$	40							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Typical Thermal Resistance (Note 2)	$\mathrm{R}_{\text {өJL }}$	15							${ }^{\circ} \mathrm{C} / \mathbf{W}$
Operating and Storage Temperature Range	T_{J}, Tstg	-55 to +150							${ }^{\circ} \mathrm{C}$

NOTES:

1- Measured at $1 \mathrm{MH}_{\mathrm{Z}}$ and applied reverse voltage of 4.0 VDC .
2- Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B. with 0.5×0.5 " ($13 \times 13 \mathrm{~mm}$) copper pads

RATINGS AND CHARACTERISTIC CURVES

Fig. 1 - Derating Curve Output
Rectified Current

Fig. 3 - Typical Forward Characteristics Per Leg

Fig. 5 - Typical Junction Capacitance Per Leg

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current Per Leg

Fig. 4 - Typical Reverse Leakage Characteristics Per Leg

Fig. 6 - Typical Transient Thermal Impedance

